Problem 6) a) We guess that the solution is of the form f(x) = x°. substitution into the
differential equation then yields
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b) When s; happens to be equal to s,, the above method yields only one solution. This happens
when the expression under the square-root vanishes, that is, (a — b)? = 4ac, or, b = a + 2+/ac.
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Thus, in the limit when s; = s, = s, we will have f(x) = Ayx° In x. The general solution of the
equi-dimensional differential equation in the special case when b = a + 2vac may thus be
written as f(x) = (Ay + 4; Inx)x5.

d) f)=xInx - f'xX)=A+slhnx)x*1 > f"(x) =[2s—1) +s(s — 1) Inx]x52.
Therefore,
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In the special case when b = a + 2vac, we have s = s; = s, = (a — b)/(2a) = F+/c/a. Also,

the coefficient of In x in the above expression may be written as a(s + +/c/a)?. Both terms of
the expression thus vanish, confirming f(x) = x° In x as a solution of the differential equation.




